Reference Projects Last update: 2025-Feb-04

designXtronics Roman Frank Starbek

design X tronics

smart.simple.swift.

PROJECTS (Extraction) _____

2024 – 2025	Model-based software design for a Safety Controller – N.N.
Period:	6 months
Content:	Formalization of safety requirements with the goal of 100 % verification; automatic Stateflow model generation based on formalized requirements; design of application software architecture and implementation of generated models; unit test specification and reproducible Model-in-the-Loop and regression tests; process documentation aligned to DIN EN ISO 13849
Tools:	MATLAB/Simulink/Stateflow, designXtronics Requirements Verifier, designXtronics Model Tester
2022 – 2024	Model-based software design for a 400 kW fuel cell system – GLOBE Fule Cell Systems GmbH (Stuttgart)
Period:	19 months
Content:	Development of infrastructure and simulation architecture for hybrid fuel cell systems including all relevant interfaces; design of the simulation environment for a flexible and database-based exchange of components and I/O's; development of plant simulation models, model-based controller design and software implementation for components (high temperature cooling circuit for stack cooling, cathode circuit for oxygen reaction, coordinator for coordination of all software components; system Interface for interaction with HMI and system test bench); unit tests for software components; software-related support during commissioning of component test benches (close interaction and coordination of overall fuel cell system simulation models; implementation of overall fuel cell system simulation model including all software components and plant (cooling circuit, cathode circuit, anode circuit, test bench,); system tests and optimization of functionality
Tools:	MATLAB/Simulink/Stateflow, ETAS, Jira, GIT

PHILOSOPHY

SMART – create products that are characterized by a high intelligence content

SIMPLE – just implement what's needed, not what's possible

SWIFT – success projects with a great amount of experience

CONTACT

Telephone:	+49 (0) 21 74 / 666 32 67
Mobile:	+49 (0) 1523 / 767 41 22
E-Mail:	roman.starbek@designXtronics.de
Web:	www.designXtronics.de
Web: Address:	www.designXtronics.de Kapellenweg 7

Reference Projects

designXtronics Roman Frank Starbek

PHILOSOPHY

SMART – create products that are characterized by a high intelligence content

SIMPLE – just implement what's needed, not what's possible

SWIFT – success projects with a great amount of experience

CONTACT

Telephone:	+49 (0) 21 74 / 666 32 67
	+49 (0) 1523 / 767 41 22
E-Mail:	roman.starbek@designXtronics.de
Web:	www.designXtronics.de
Web: Address:	www.designXtronics.de Kapellenweg 7

design **X tronics**

smart.simple.swift.

PROJECTS (Extraction) _

Functional Safety Software for Electronic Torque Manager (ETM®) - GKN Driveline International GmbH 2021 - 2022 Period: 13 months Content: Concept Development & Evaluation of model-based algorithms for Safety Torque Monitoring; Consulting and Support for Development of Functional Safety Software (ISO 26262, ASIL-B); Automotive SPICE®-conform development along Software Engineering Process Group (SWE); Ensuring quality maturity levels in corresponding development stages MATLAB/Simulink/Stateflow, dSPACE TargetLink, PTC Integrity Lifecycle Manager Tools: 2019 - 2020 Plant modeling & model-based control design – Edscha Engineering GmbH (Remscheid) Period: 6 months Content: Derivation of physical equivalent model of an electric drive system containing components electric motor, transmission, coupling, load and non-linearities (e.g. friction, mechanical bound and kinematics); implementation of the complete drive system model, analysis and testing of dynamics; introduction of a cascaded control concept; model-based design of controllers and realization of a MATLAB® GUI for rapid control design and automized linear and non-linear analysis with corresponding plot figures for characteristics of system dynamics MATLAB/Simulink/Stateflow, GIT Tools: 2019 - 2020 Chassis Control Coordinator for autonomous driving - (Salt & Pepper Technology GmbH & Co. KG) Period: 15 months Consulting and coordination of tasks within the Salt & Pepper team; development of a MATLAB® user Content: interface "Track Generator" for the interactive definition and kinematic analysis of reference trajectories for autonomous driving; consulting on development of a Simulink® functional architecture for series longitudinal controller; development of longitudinal control (library) functions for various requirements for position, velocity and acceleration controls; implementation of smooth switching mechanisms between several longitudinal controllers taking into account various situations (driving, stopping, standstill, starting, etc.); development of filter algorithms for reference values dependent on several constraints; development of Simulink® library blocks and a comprehensive MATLAB® GUI for definition and execution of automated unit tests Tools: MATLAB/Simulink/Stateflow, GIT, Jira, Doors 2015 - 2018 Rapid Control Prototyping test bench for model-based design of control algorithms for refrigerant circuits of heat pumps - Vaillant (Remscheid) Period: 24 months Content: Commercial and technical head of overall test bench development: support with documentation of the specifications (requirements, components, interfaces, etc.), selection and research of actuators, sensors, power amplifiers and real-time system; development and implementation of powerful and generic software architecture and control software, extensive initial commissioning and Rapid Control Prototyping of modern complex algorithms for refrigerant circuit control MATLAB/Simulink/Stateflow. dSPACE MicroLabBox and ControlDesk Tools: 2014 - 2015 Model-based control of a Hardware-in-the-loop test bench for actuators of electric steering systems - Ford (Cologne) Period: 8 months Analysis of existing test bench control software, modeling of a steering system with actuators, integration of Content: the steering system into a vehicle simulation model (ASM) for real-time implementation on the Hardware-inthe-loop (HIL) test bench; modeling of the HIL components (load motor, clutch, steering drive motor) and simulation of the overall test bench; concept development for an algorithm for active vibration damping (Kalman), simulation of the concept, implementation and commissioning on the test bench MATLAB/Simulink/Stateflow. dSPACE DS1006 Tools: Development of a test bench for analysis of efficiency of EPB spindles - TRW (Koblenz) 2013 - 2014 Period: 24 months Content: Commercial and technical project management for overall test bench development: support with documentation of the specification, dimensioning of components and CAD construction; implementation of a simulation study and derivation of requirements for selection and research of actuators, sensors, power amplifiers and real-time system; development of control approach and generic software architecture: construction, commissioning and approval of the test bench CATIA, MATLAB/Simulink/Stateflow, dSPACE ControlDesk und DS1006 Tools: 2012 - 2013 Development of a Hardware-in-the-Loop test bench for actuators of electric steering systems – Gigatronik (Cologne) 8 months Period: Commercial and technical project management for the overall test bench development: support with Content: documentation of the specifications, dimensioning of components and CAD construction; selection and research of actuators, sensors, power amplifiers and real-time system; model-based control design (modeling of steering system, extensive linear analysis and functional testing) Tools: MATLAB/Simulink/Stateflow, dSPACE ControlDesk und DS1006

Reference Projects

designXtronics Roman Frank Starbek

PHILOSOPHY

SMART – create products that are characterized by a high intelligence content

SIMPLE – just implement what's needed, not what's possible

SWIFT – success projects with a great amount of experience

CONTACT

Telephone:	+49 (0) 21 74 / 666 32 67
	+49 (0) 1523 / 767 41 22
E-Mail:	roman.starbek@designXtronics.de
Web:	www.designXtronics.de
	Kapellenweg 7 51399 Burscheid GERMANY

design **X tronics**

smart.simple.swift.

PROJECTS (extract)

2011 – 2012	
2011 – 2012	Model-based control of a magneto-rheological absorber to limit the spinal force of vehicle occupants – Gigatronik (Stuttgart)/Inventus (Austria)
Period:	6 months
Content:	Modeling and implementation of a magneto-rheological absorber system as well as linear and non-linear analysis of system dynamics; design and implementation of a controller with a non-linear observer (Kalman) to estimate the spinal force; offline simulation of the closed control loop for analysis of the absorber and derivation of the requirements for absorber, control unit and interfaces; real-time implementation and application
Tools:	MATLAB/Simulink/ Stateflow, GIGABOX pro and dSPACE MicroAutoBox
2011	Control software for a keyless entry and start system – Delphi (Wuppertal)
Period:	9 months
Content:	Specification of an event-based keyless system functionality with regard to modularity, AUTOSAR conformity and production C code generation; specification with customer and implementation of all keyless functions; development of Simulink environment for offline simulation and analysis of the overall algorithm; extension of the keyless development environment by a complex MATLAB user interface for visualization of locking functions and antenna search rooms/areas for reproducible function tests within offline simulation
Tools:	MATLAB/Simulink/Stateflow
2010 Period:	Development and implementation of control algorithms for brushless DC motors – Pierburg (Neuss) 4 months
Content:	Physical modeling of a rotating drive unit, model-based design of a cascade controller (current, speed,
content.	position); development of an algorithm for commutation and field-oriented current control of a motor prototype
Tools:	MATLAB/Simulink
2009 – 2010	Real-time Blockset for the rapid prototyping system "GIGABOX pro" – Gigatronik (Cologne)
Period:	8 months
Content:	Specification of Simulink interface blocks and configuration for GIGABOX pro interfaces (AD-Converter/DA- Converter, digital I/O, PWM output, CAN, RS232, etc.); realization of a block library with a powerful generic API functionality; testing and commissioning of all interfaces under real-time conditions; specification and implementation of extensive online help for the Real-Time Blockset
Tools:	MATLAB/Simulink/Real-Time Workshop
2008	Model-based control and diagnosis for active toe angle and camber angle adjustment – BMW (Munich)
Period:	4 months
Content:	Supervision and coordination of the prototypical development of a real-time capable Simulink algorithm for the implementation of an active toe angle and camber angle adjustment on the rear axle of a vehicle; analysis of potentials for vehicle dynamics control; development of a prototypical model-based diagnosis
Tools:	MATLAB/Simulink/Stateflow, dSPACE MicroAutoBox
2006 – 2007	Observer-based current control for a magnetic actuator – Siemens VDO (Schwalbach)
Period:	16 months
Content:	Physical modeling of a magnetic actuator; development of a non-linear parameter observer; design and implementation of a model-based classic current control based on observer output
Tools:	MATLAB/Simulink/Stateflow, dSPACE ControlDesk and DS1005
2004 – 2005	Environment for the development and implementation of driver assistance functions using the example of a model car – Gigatronik (Stuttgart)
Period:	10 months
Content:	Thesis supervision: setup of a model car (1:12), which is located on a flat track unit and is equipped with
	sensors for distance detection, and the associated hardware and software; design and implementation of a gain-scheduled H-Infinity controller for position control of the model car
Tools:	MATLAB/Simulink/Stateflow, dSPACE ControlDesk and DS1005
2004	Optimal state-space controller for electro-mechanical power steering – BMW (Munich)
Period:	8 months
Content:	Physical modeling of the steering system; development of an environment for the rapid automated design of a Linear Quadratic Gauss (LQG & Kalman) controller for zero torque control of an electro-mechanical power steering system; real-time implementation and coordination of the controller in the test vehicle
Tools:	MATLAB/Simulink, dSPACE ControlDesk and MicroAutoBox

www.xing.com/profile/RomanFrank_Starbek

in www.linkedin.com/in/roman-starbek-98019115a

Reference Projects

designXtronics Roman Frank Starbek

PHILOSOPHY

SMART – create products that are characterized by a high intelligence content

SIMPLE – just implement what's needed, not what's possible

Telephone:	+49 (0) 21 74 / 666 32 67
	+49 (0) 1523 / 767 41 22
E-Mail:	roman.starbek@designXtronics.de
Web:	www.designXtronics.de
	Kapellenweg 7
	51399 Burscheid

design X tronics

smart.simple.swift.

PROJECTS (extract)

2004	Modeling of a vehicle on a roller test bench for a diagnostic tester – Daimler (Sindelfingen)
Period:	6 months
Content:	Physical modeling of a vehicle drive train including tires on a controlled roller test bench; generation of the model C code and implementation on a real-time capable PC as a simulation and test environment for a diagnostic tester
Tools:	MATLAB/Simulink/Stateflow, dSPACE TargetLink and dSPACE ControlDesk and DS1005
2003 – 2004	SIL-Simulation of a cruise control algorithm – Daimler (Untertürkheim)
Period:	3 months
Content:	Programming of a powerful MATLAB graphical user interface for the interactive and reproducible Software- in-the-Loop (SIL) test of a cruise control algorithm for commercial vehicles in offline simulation with logging and analysis functionalities
Tools:	MATLAB/Simulink
2003 - 2004	Modeling and simulation of a two-track vehicle model – Gigatronik (Stuttgart)
Period:	18 months
Content:	Development, implementation and real-time test of a generic two-track vehicle model for use in vehicle dynamics applications in offline and online (real-time) simulation
Tools:	MATLAB/Simulink/Stateflow, dSPACE DS1005 and AutoBox
2003 - 2004	Active vehicle fixing control and driving resistance simulation – Daimler (Sindelfingen)
Period:	12 months
Content:	Model-based development, implementation and commissioning of a cascade control for a position- controlled fixing functionality via active air springs to fix a vehicle on a driving dynamics test bench; development, implementation and commissioning of an algorithm for simulating driving resistance for the driving dynamics test bench
Tools:	MATLAB/Simulink/Stateflow, dSPACE-ControlDesk and DS1005
2003	Drive train model with automatic transmission and Tiptronic - Daimler (Sindelfingen)
Period:	3 months
Content:	Physical modeling of a vehicle drive train with automatic transmission and tiptronic functionality for an FMU (Functional Mockup Unit); generation and implementation of the C code on a real-time capable PC
Tools:	MATLAB/Simulink/Stateflow, dSPACE TargetLink
2002 – 2003	Model-based control algorithm for reversible belt retractors – TRW (Alfdorf)
Period:	6 months
Content:	Development of a model-based triggering algorithm for a reversible belt retractor; generation of the production code and commissioning as well as coordination of the prototype in the test vehicle
Tools:	MATLAB/Simulink, dSPACE TargetLink, GT-uniECU
2002 2003	Control of an exhaust gas recirculation valve – Gigatronik (Stuttgart)
Period:	6 months
Content:	Physical modeling of an exhaust gas recirculation valve as well as development, implementation and commissioning of various control approaches (PI, PID, LQG, H-inf,) for training purposes
Tools:	MATLAB/Simulink, dSPACE ControlDesk, DS1005 and Autobox
2001 – 2002	
2001 2002	Development of electrical steering systems – Mercedes-Benz Lenkungen (Esslingen)
Period:	Development of electrical steering systems – Mercedes-Benz Lenkungen (Esslingen) 14 months
Period: Content:	14 months Requirements management for electrical steering systems; physical modeling of various electrical steering systems (EPAS, superimposed steering); specification of requirements for mechanical engineers; model- based development of various modern control approaches (LOQ); production code generation for fixed- point arithmetic; implementation on prototyping hardware and validation in the test vehicle and in driving tests; development of an environment for automatic identification of linear and non-linear electric motor parameters
Period:	14 months Requirements management for electrical steering systems; physical modeling of various electrical steering systems (EPAS, superimposed steering); specification of requirements for mechanical engineers; model- based development of various modern control approaches (LOQ); production code generation for fixed- point arithmetic; implementation on prototyping hardware and validation in the test vehicle and in driving tests; development of an environment for automatic identification of linear and non-linear electric motor
Period: Content:	14 months Requirements management for electrical steering systems; physical modeling of various electrical steering systems (EPAS, superimposed steering); specification of requirements for mechanical engineers; model- based development of various modern control approaches (LOQ); production code generation for fixed- point arithmetic; implementation on prototyping hardware and validation in the test vehicle and in driving tests; development of an environment for automatic identification of linear and non-linear electric motor parameters
Period: Content: Tools:	14 months Requirements management for electrical steering systems; physical modeling of various electrical steering systems (EPAS, superimposed steering); specification of requirements for mechanical engineers; model- based development of various modern control approaches (LOQ); production code generation for fixed- point arithmetic; implementation on prototyping hardware and validation in the test vehicle and in driving tests; development of an environment for automatic identification of linear and non-linear electric motor parameters MATLAB/Simulink, dSPACE ControlDesk and Autobox Development of scaling tools for fixed-point production code generation with TargetLink – dSPACE GmbH
Period: Content: Tools: 1999 – 2001	14 months Requirements management for electrical steering systems; physical modeling of various electrical steering systems (EPAS, superimposed steering); specification of requirements for mechanical engineers; model- based development of various modern control approaches (LOQ); production code generation for fixed- point arithmetic; implementation on prototyping hardware and validation in the test vehicle and in driving tests; development of an environment for automatic identification of linear and non-linear electric motor parameters MATLAB/Simulink, dSPACE ControlDesk and Autobox Development of scaling tools for fixed-point production code generation with TargetLink – dSPACE GmbH (Paderborn)

www.xing.com/profile/RomanFrank_Starbek

in www.linkedin.com/in/roman-starbek-98019115a